
Types of Studies
Brad A. Myers
Michael Coblenz, Jonathan Aldrich, Joshua Sunshine
Human-Computer Interaction Institute
School of Computer Science

bam@cs.cmu.edu
bradamyers.com

1 © 2018 – Brad A. Myers

Dagstuhl Seminar 18061
Evidence About Programmers for
Programming Language Design

mailto:bam@cs.cmu.edu
http://www.cs.cmu.edu/%7Ebam/

Talk Based on:

• Michael Coblenz, Jonathan Aldrich, Joshua Sunshine,
Brad Myers, Interdisciplinary Programming Language
Design. (draft distributed here)
– Comments requested!

• Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and
YoungSeok Yoon. "Programmers Are Users Too: Human-
Centered Methods for Improving Programming
Tools," IEEE Computer, Special issue on UI Design, 49,
issue 7, July, 2016, pp. 44-52. IEEE DL or local pdf

2 © 2018 – Brad A. Myers

http://materials.dagstuhl.de/files/18/18061/18061.MichaelCoblenz.Preprint.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7503516
http://www.cs.cmu.edu/%7Enatprog/papers/IEEE-Computer-07503516.pdf

“Design”

• Much more to the “design” of
a language than just evaluation
– Design is a creative process

• Many methods which can be used
at different parts of the process
– That answer different questions

• Different people will have different
perspectives and goals

3 © 2018 – Brad A. Myers

Language vs. Environment
vs. APIs
• This meeting focuses on the

programming language itself
• For some languages, not really

separable from the editor or IDE
– E.g., Visual Programming languages

• Fluid about what is in the “language” vs. in its libraries
(APIs)
– I/O, Multi-processing, Glacier’s immutability [Coblenz, ICSE’17]

• But still focusing on language itself

4 © 2018 – Brad A. Myers

Many HCI Methods for improving programmer productivity

Exploratory Studies
 Contextual Inquiries
 Interviews
 Surveys
 Lab Studies
 Corpus data mining

Evaluative Studies
 Expert analyses
 Usability Evaluation
 Formal A/B Lab Testing

Design Practices
 “Natural programming”
 Graphic & Interaction

Design
 Prototyping

Field Studies
 Logs & error reports

© 2018 – Brad A. Myers

We have used a variety of HCI
methods to improve programming
tools across the lifecycle.

Cite: Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon. "Programmers Are Users Too: Human-Centered Methods for Improving Programming Tools," IEEE Computer,
Special issue on UI Design, 49, issue 7, July, 2016, pp. 44-52. IEEE DL or local pdf

5

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7503516
http://www.cs.cmu.edu/%7Enatprog/papers/IEEE-Computer-07503516.pdf

• Combined needs-finding, design, implementation
• Combined all parts of evaluation
• Some methods are not “human-centered”
• Still iterative
• All are “design”
• We are the

“designers”
– vs. users

of languages
• Both are “programmers”

Simpler Model in New Paper

6 © 2018 – Brad A. Myers

Overview

• Desiderata of Programming Languages (Goals)
• Perspectives on Language Design (Roles)
• Methods for Design
• Interdisciplinary Approach
• (If time) Examples of our use of these methods

7 © 2018 – Brad A. Myers

Desiderata of Programming Languages (Goals)

• What designer wants language to be good for
• Based on software engineering quality attributes

– Most can be affected by programming language design
• Design always involves tradeoffs among the attributes
• Must decide which goals to focus on

– What should be optimized?
• Depends on the designer’s aims for the language or feature

– What evaluation methods are appropriate?
• Learnability measured differently than Correctness

• Must be intentional and explicit about priorities

8 © 2018 – Brad A. Myers

Goals (traditional)

1. Correctness
 Adherence to a specification
 Absence of bugs
 Supported by: type and proof systems
 Evaluated by: proofs of soundness theorems

2. Performance
 Of resulting code (not of the programmer or compiler)
 Evaluated by: benchmarks

9 © 2018 – Brad A. Myers

Goals (traditional)

3. Expressiveness
 Programmers can express their intent explicitly
 May trade off with usability
 Programmers have to express more
 Modifiability – better if can be checked, but more work to change

 Supported by: type systems, domain-specific features
 Evaluated by: case studies, examples

4. Speed of Compiling
 Has always been a concern (e.g., C is one-pass; Go modules)
 Evaluated by: measuring compile time of benchmark code

10 © 2018 – Brad A. Myers

Goals (usability)
5. Understandability
 Readability
 10:1 ratio reading vs. writing
 Considers both: what does this code do & where is the code that does X
 Supported by: appropriate keywords, syntax, and features
 Evaluated by:
 User studies of reading code
 Can programmers answer important questions

6. Ease of Reasoning
 User-focused analog of correctness
 Should be user-centered, not just designer’s
 Supported by: modules (separation); concise proofs of correctness
 Evaluated by: user studies

11 © 2018 – Brad A. Myers

Goals (usability)

7. Modifiability
 Ease of making changes to the code (ref: cog. dim.’s viscosity)
 Key software engineering requirement
 Supported by: information hiding
 Evaluated by: user studies of editing; case studies for larger

modifications
8. Learnability
 Key to adoption
 Key requirement for schools
 Supported by: fewer concepts (e.g., removing textual syntax),

good pedagogy, being similar to known languages
 Evaluated by: lab or classroom studies with novices

12 © 2018 – Brad A. Myers

Goals (Discussion)

• Other goals that are not listed?
• I proposed “speed of entering code”?
• What about “scalability”?

– Multiple people writing code for large systems
• “Debuggability”?
• Other quality attributes or usability attributes not

covered?

13 © 2018 – Brad A. Myers

Perspectives on Language Design (Roles)

• Kinds of people – perspectives
– Affects what they value in the design
– Which of the goals are most important

• Not researcher vs. practitioner
• Most people combine multiple roles
• It was hard to pick good names for these

– Trying to be non-judgmental

14 © 2018 – Brad A. Myers

Roles

1. Logician
 Key Focus: on correctness; formal methods
 Programming by highly-trained experts
 Programming is a mathematical pursuit
 Closeness of mapping to mathematical thinking

 Key Research: new mathematical principles, e.g., type theory
2. Industrialist
 Creating new language for large-scale use in companies
 Key Focus: on performance and adoption
 Learnability
 Scalability

15 © 2018 – Brad A. Myers

Roles
3. Empiricist
 Key Focus: experiments about specific design decisions
 Hope to enlighten many aspects of design with human-centered data
 Programming is a human pursuit
 Closeness of mapping for “regular” people/programmers

 Key Research: human-centered studies
4. Teacher
 Key Focus: learnability
 Avoid irrelevant struggles (e.g., syntax for beginners)
 Often significant focus on programming environment
 Rarely cares about scalability, efficiency, etc.
 If advanced class, may want commercial tools
 Key Research: pedagogy

16 © 2018 – Brad A. Myers

Roles (discussion)

• Do we need other roles to cover the perspectives /
desires for languages?

• Are there better names?

17 © 2018 – Brad A. Myers

Methods

• Requirements and creation
– Not necessarily have a prototype yet

• Evaluation
– Have a design
– At least a prototype

• Some methods may be used for many kinds of
information gathering

• My previous talks and papers have shown how my
group has used many of these

18 © 2018 – Brad A. Myers

Methods
(Requirements and Creation)
1. Interviews
 Understand the experience of experts
 Identify important problems to solve & existing approaches
 Limited to small numbers
 Opinions – limited by what is salient

2. Surveys
 Good for identifying how widespread a problem is
 How important to address

 Also opinions; data can be noisy
 But not particularly useful to ask what people like best

 Limited by demographics of respondents

19 © 2018 – Brad A. Myers

Methods (Requirements and Creation)

3. Corpus Studies
 Look for patterns in existing code
 Need hypotheses about what to look for
 Need a representative corpus
 Open source may not match closed source

 (Also can be used for field studies of new designs)
4. Natural Programming
 A participatory design method
 Elicit how people express solutions without special training
 Closeness of mapping; learnability
 Limited by participant’s prior experiences

20 © 2018 – Brad A. Myers

Methods (Requirements and Creation)
5. Rapid Prototyping
 Ubiquitously used in other areas of HCI
 Low-fi (“paper”) prototypes useful to try out early ideas

 From overall concepts to low-level syntax issues
 Experimenter plays compiler

 But hard to do accurately
 Best to rely on results rather than opinions

6. PL and SE Theory
 SE theory characterizes the engineering practices that languages should support

(e.g. separate development on different modules)
 PL theory provides general principles for language design (e.g. distinguishing

types and values)
 PL theory provides a set of well-understood solutions to common language

design problems (e.g. memory safety as a way of making a language more
secure; object-oriented dispatch as a way of providing extensibility)

 (See Jonathan’s talk)

21 © 2018 – Brad A. Myers

Methods (Evaluation)

7. Qualitative user studies
 Usability analyses
 Not numerical or comparative
 Identifies obstacles and barriers

 Test feasibility, understandability, learnability
 (Can also be used on existing languages and tools as a

formative tool – what are the problems)
 Lab study with direct observations
 Limited to small tasks, small numbers of users

22 © 2018 – Brad A. Myers

Methods (Evaluation)

8. Case studies
 Language designer writes example code
 Show expressiveness and conciseness
 Often targets what a reader might wonder if feasible
 Sometimes compared to the solution in a different language
 Limited to a few small cases
 Only shows that the designer can use it

23 © 2018 – Brad A. Myers

Methods (Evaluation)

9. Expert evaluation
 “Cognitive dimensions”, “heuristic analysis,”

“cognitive walkthroughs”
 Good vocabulary for discussing tradeoffs
 Widely used for VPs, etc.
 But “just” the evaluator’s opinion
 Often the designer’s opinion

 Not validated that correlates with quantitative experiments

24 © 2018 – Brad A. Myers

Methods (Evaluation)

10. Performance evaluation
 Typically using speed of resulting code on benchmarks
 Sometimes standardized

 SIGPLAN’s “empirical evaluations” are just for performance 
 Benchmarks may not match real code
 Real programmers may not be able to write code that has

optimal properties

25 © 2018 – Brad A. Myers

Methods (Evaluation)

11. User experiments
 Also called: Formal User Studies or randomized controlled trials

(RCTs) or A/B Studies
 Are these all the same?
 What are “non-randomized, fully controlled experiments”? – Ko/Kaijanaho

 Show that A has an actual, measurable advantage over B
 “Gold standard” for academic papers
 Limited to the specific situation studied
 Not clear that results of multiple experiments can be combined
 Interaction among features, e.g., lack of consistency

26 © 2018 – Brad A. Myers

Methods (Evaluation)

12. Formalism and proof
 Show that a language has certain properties, like type

soundness
 Used to develop and extend PL theory
 Aids the conceptual integrity of the language design
 Proof forces designer to really think through the design

 May provide specification and safety guarantees
 Formal verification with tools like Dafny or Coq
 May be a gap between what can be specified and what

programmers want to do

27 © 2018 – Brad A. Myers

Methods (discussion)

• What other methods should be included?
– Eye trackers? – or is that part of usability, experiments?
– Ko/Kaijanaho: “program pair analyses”?

• HCI teaches > 30 UX methods, what others have people
used for PL design?

• What about other methods from other fields?
– What can / should we “borrow”?

• Do we need to invent new methods? For what?

28 © 2018 – Brad A. Myers

Argue for Interdisciplinary Approach
• Designers should use multiple methods from multiple fields

– Provide complementary kinds of information / evidence
• One method can address the shortcomings of another
• Through triangulation the whole can be greater than the sum of the

individual methods
– Use methods at all phases of the process
– “Mixed methods”

• “Successful” languages meet multiple goals
• Be strategic in selecting methods

– What are the questions / claims?
• CMU’s collaboration PL/SE + HCI has worked well

– Myers, Aldrich, Shaw, Herbsleb
– ~20 PhD students

29 © 2018 – Brad A. Myers

Argue Against
• We should argue against:

× Unsubstantiated claims
× Unstated assumptions about what is “best”

• Must list project/language goals
× Use of inappropriate methods
× Performing the methods incorrectly
× Assuming only one method is valid to use

• E.g., Formal Methods or Performance or RCTs
× Just assuming the conventional wisdom

• Studies often show it doesn’t hold (see next talk!)
× Inadequate reporting of results

× Non-reproducibility of studies – insufficiently documented

30 © 2018 – Brad A. Myers

Examples

• (If time)
– We have used a variety of these methods in many projects

• (If not time), See:
– Our position paper for this meeting
– Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok

Yoon. "Programmers Are Users Too: Human-Centered Methods for
Improving Programming Tools," IEEE Computer, Special issue on
UI Design, 49, issue 7, July, 2016, pp. 44-52. IEEE DL or local pdf

– My presentation at Dagstuhl 15222: Brad A. Myers, "Using the
Natural Programming Approach Throughout the
Lifecycle," Dagstuhl Conference on Human-Centric Development of
Software Tools, May 25 – 28, 2015, Dagstuhl Seminar 15222, p.
128. pdf. DOI: 10.4230/DagRep.5.5.115

31 © 2018 – Brad A. Myers

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7503516
http://www.cs.cmu.edu/%7Enatprog/papers/IEEE-Computer-07503516.pdf
http://www.dagstuhl.de/15222
http://drops.dagstuhl.de/opus/volltexte/2016/5404/pdf/dagrep_v005_i005_p115_s15222.pdf
http://dx.doi.org/10.4230/DagRep.5.5.115

Many User Centered Methods
• Contextual Inquiry
• Contextual Analysis
• Paper prototypes
• Think-aloud protocols
• Heuristic Evaluation
• Affinity diagrams
• Personas
• Wizard of Oz
• Task analysis
• A/B testing
• Cognitive Walkthrough
• Cognitive Dimensions
• KLM and GOMS (CogTool)
• Video prototyping

• Body storming
• Expert interviews
• Questionnaires
• Surveys
• Interaction Relabeling
• Log analysis
• Storyboards
• Focus groups
• Card sorting
• Diary studies
• Improvisation
• Use cases
• Scenarios
• “Speed Dating”
• …

32 © 2018 – Brad A. Myers

Example of Interviews: Immutability

• Experts recommend making classes immutable so instances cannot
change accidentally
– Thread safe, more secure, no unexpected state changes, etc.

• Usability studies suggest programmers prefer classes that can change
• Various relevant language features

– C++ const, Java final, Obj-C immutable collections, .NET Freezable, etc.
• Semi-structured interviews with a convenience sample of 8 software

engineers
– Agreed that mutability is a frequent source of bugs
– But none of these features are what is needed
– Preferred transitive, class-based immutability

• Provided this in the Glacier tool (Coblenz, et. al. ICSE’2016 and ICSE’2017)
• Great Languages Allow Class Immutability Enforced Readily

33 © 2018 – Brad A. Myers

Corpus Data Mining

• Studied 11 million Java try/catch blocks from GitHub using
the Boa tool

• 12% of catch blocks were completely empty.
• 25% of all exceptions caught are simply Exception
• Motivated a new tool to help programmers write better

exception handling code

34 © 2018 – Brad A. Myers

[Kery, Le Goues, & Myers, MSR’2016]
[Kistner, Kery, Puskas, Moore & Myers, VL/HCC2017]

“Natural Programming”
• Technique developed by my group to elicit developer’s

“natural” expressions
– Mental models of tasks, vocabulary, etc.

• Blank paper tests
• Must prompt for the tasks in a way that doesn’t bias the

answers
• Examples:

– PacMan before and after
• Mostly rule-based (if-then)

– API designs
• Architecture, words used, which methods are on

which classes

35 © 2018 – Brad A. Myers

Early Prototyping
• Thomas LaToza designing new visualization tool to try to help

answer Reachability Questions
• Prototypes created with Omnigraffle and printed
• Revealed significant usability

problems that were fixed
before implementation
– Graphical presentation
– Controls

36 © 2018 – Brad A. Myers

Another Example: Variolite

• How to support data scientists with exploratory programming?
• What kind of version control support would be useful?

– Interviews and CIs showed that conventional approaches like Git are
too heavy-weight

• Showed dozens of sketches to
target users to get feedback on
which seemed usable and useful

• Resulting design presented at CHI’2017
• Variations Augment Real Iterative Outcomes

Letting Information Transcend Exploration

37 © 2018 – Brad A. Myers

[Kery, Horvath, & Myers, CHI’2017]

© 2018 – Brad A. Myers

Expert Analyses
• Collaborating with SAP on their APIs and tools
• We studied SAP’s Enterprise Service-Oriented Architecture (eSOA)

APIs & Documentation
– Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, Brad A. Myers. "Usability Challenges for Enterprise Service-Oriented

Architecture APIs," 2008 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC'08. Sept 15-18, 2008,
Herrsching am Ammersee, Germany. pp. 193-196.

• Naming problems:
– Too long
– Not understandable

38

Usability Analysis
• Thomas LaToza’s REACHER tool for Reachability Questions went

through multiple iterations
– Revised based on paper prototype (discussed already)
– Revised based on 1st evaluation of full system

• E.g., replaced duplicates of calls to methods with pointers
• Changed to preserve order of outgoing edges
• Redesign of icons, interactions



39 © 2018 – Brad A. Myers

Another Example of Usability Analysis
• Sugilite: Smartphone Users

Generating Intelligent Likeable
Interfaces Through Examples

• Allow end-users to create
automations on Smartphones

• Initiate with speech commands
• Record scripts by example
• Generalizes from one or more examples
• 19 participants attempted 5 tasks

– All completed at least 2 tasks successfully
– 8 (42.1%) succeed in all 4 tasks
– Overall, 65 out of 76 (85.5%) scripts worked
– Feedback on what we need to improve

40 © 2018 – Brad A. Myers

A/B Testing of Programming Language Feature

• Glacier immutability extension to Java
• 20 experienced Java programmers
• Compared to using Java final as instructed by Josh Bloch

41 © 2018 – Brad A. Myers

final Glacier
Users who made errors enforcing immutability
(after all tasks)

10/10 0/10

Completed FileRequest.execute() tasks with
security vulnerabilities

4/8 0/8

Completed HashBucket.put() tasks with bugs 7/10 0/7

Another Example of A/B testing

• User testing of InterState
compared to JavaScript

42 © 2018 – Brad A. Myers

Task 1* Task 2**
0

10

20

30

40

time taken
(minutes)

JavaScript
InterState

p < .01**
p < .05 *

smaller is better

Another Example of A/B testing
• Gneiss: Gathering Novel End-user Internet Services using

Spreadsheets
– Kerry Chang and Brad A. Myers, "Using and Exploring Hierarchical Data in

Spreadsheets." CHI'2016, pp. 2497-2507.
• Novel spreadsheet interface for investigating hierarchical

(e.g., JSON) data
– Investigate using conventional spreadsheet formulas and drag-and-

drop of columns
• Gneiss users significantly outperformed Excel users and

programmers (p<.001)

43 © 2018 – Brad A. Myers

	Types of Studies
	Talk Based on:
	“Design”
	Language vs. Environment�vs. APIs
	Many HCI Methods for improving programmer productivity
	Simpler Model in New Paper
	Overview
	Desiderata of Programming Languages (Goals)
	Goals (traditional)
	Goals (traditional)
	Goals (usability)
	Goals (usability)
	Goals (Discussion)
	Perspectives on Language Design (Roles)
	Roles
	Roles
	Roles (discussion)
	Methods
	Methods�(Requirements and Creation)
	Methods (Requirements and Creation)
	Methods (Requirements and Creation)
	Methods (Evaluation)
	Methods (Evaluation)
	Methods (Evaluation)
	Methods (Evaluation)
	Methods (Evaluation)
	Methods (Evaluation)
	Methods (discussion)
	Argue for Interdisciplinary Approach
	Argue Against
	Examples
	Many User Centered Methods
	Example of Interviews: Immutability
	Corpus Data Mining
	“Natural Programming”
	Early Prototyping
	Another Example: Variolite
	Expert Analyses
	Usability Analysis
	Another Example of Usability Analysis
	A/B Testing of Programming Language Feature
	Another Example of A/B testing
	Another Example of A/B testing

