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Talk Based on:

• Michael Coblenz, Jonathan Aldrich, Joshua Sunshine, 
Brad Myers, Interdisciplinary Programming Language 
Design. (draft distributed here)
– Comments requested!

• Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and 
YoungSeok Yoon. "Programmers Are Users Too: Human-
Centered Methods for Improving Programming 
Tools," IEEE Computer, Special issue on UI Design, 49, 
issue 7, July, 2016, pp. 44-52. IEEE DL or local pdf
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“Design”

• Much more to the “design” of
a language than just evaluation
– Design is a creative process

• Many methods which can be used
at different parts of the process
– That answer different questions

• Different people will have different
perspectives and goals
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Language vs. Environment
vs. APIs
• This meeting focuses on the

programming language itself
• For some languages, not really

separable from the editor or IDE
– E.g., Visual Programming languages

• Fluid about what is in the “language” vs. in its libraries 
(APIs)
– I/O, Multi-processing, Glacier’s immutability [Coblenz, ICSE’17]

• But still focusing on language itself
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Many HCI Methods for improving programmer productivity

Exploratory Studies
 Contextual Inquiries
 Interviews
 Surveys
 Lab Studies
 Corpus data mining

Evaluative Studies
 Expert analyses
 Usability Evaluation
 Formal A/B Lab Testing

Design Practices
 “Natural programming”
 Graphic & Interaction 

Design
 Prototyping

Field Studies
 Logs & error reports
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We have used a variety of HCI 
methods to improve programming 
tools across the lifecycle.

Cite: Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon. "Programmers Are Users Too: Human-Centered Methods for Improving Programming Tools," IEEE Computer, 
Special issue on UI Design, 49, issue 7, July, 2016, pp. 44-52. IEEE DL or local pdf
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• Combined needs-finding, design, implementation
• Combined all parts of evaluation
• Some methods are not “human-centered”
• Still iterative
• All are “design”
• We are the

“designers”
– vs. users

of languages
• Both are “programmers”

Simpler Model in New Paper
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Overview

• Desiderata of Programming Languages (Goals) 
• Perspectives on Language Design (Roles)
• Methods for Design
• Interdisciplinary Approach
• (If time) Examples of our use of these methods
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Desiderata of Programming Languages (Goals)

• What designer wants language to be good for
• Based on software engineering quality attributes

– Most can be affected by programming language design
• Design always involves tradeoffs among the attributes
• Must decide which goals to focus on

– What should be optimized?
• Depends on the designer’s aims for the language or feature

– What evaluation methods are appropriate?
• Learnability measured differently than Correctness

• Must be intentional and explicit about priorities
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Goals (traditional)

1. Correctness
 Adherence to a specification
 Absence of bugs
 Supported by: type and proof systems
 Evaluated by: proofs of soundness theorems

2. Performance
 Of resulting code (not of the programmer or compiler)
 Evaluated by: benchmarks
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Goals (traditional)

3. Expressiveness
 Programmers can express their intent explicitly
 May trade off with usability
 Programmers have to express more
 Modifiability – better if can be checked, but more work to change

 Supported by: type systems, domain-specific features
 Evaluated by: case studies, examples

4. Speed of Compiling
 Has always been a concern (e.g., C is one-pass; Go modules)
 Evaluated by: measuring compile time of benchmark code
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Goals (usability)
5. Understandability
 Readability
 10:1 ratio reading vs. writing
 Considers both: what does this code do & where is the code that does X
 Supported by: appropriate keywords, syntax, and features
 Evaluated by: 
 User studies of reading code
 Can programmers answer important questions

6. Ease of Reasoning
 User-focused analog of correctness
 Should be user-centered, not just designer’s
 Supported by: modules (separation); concise proofs of correctness
 Evaluated by: user studies
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Goals (usability)

7. Modifiability
 Ease of making changes to the code (ref: cog. dim.’s viscosity)
 Key software engineering requirement
 Supported by: information hiding
 Evaluated by: user studies of editing; case studies for larger 

modifications
8. Learnability
 Key to adoption
 Key requirement for schools
 Supported by: fewer concepts (e.g., removing textual syntax), 

good pedagogy, being similar to known languages
 Evaluated by: lab or classroom studies with novices
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Goals (Discussion)

• Other goals that are not listed?
• I proposed “speed of entering code”?
• What about “scalability”? 

– Multiple people writing code for large systems
• “Debuggability”?
• Other quality attributes or usability attributes not 

covered?
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Perspectives on Language Design (Roles)

• Kinds of people – perspectives
– Affects what they value in the design
– Which of the goals are most important

• Not researcher vs. practitioner
• Most people combine multiple roles
• It was hard to pick good names for these

– Trying to be non-judgmental
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Roles

1. Logician
 Key Focus: on correctness; formal methods
 Programming by highly-trained experts
 Programming is a mathematical pursuit
 Closeness of mapping to mathematical thinking

 Key Research: new mathematical principles, e.g., type theory
2. Industrialist
 Creating new language for large-scale use in companies
 Key Focus: on performance and adoption
 Learnability
 Scalability
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Roles
3. Empiricist
 Key Focus: experiments about specific design decisions
 Hope to enlighten many aspects of design with human-centered data 
 Programming is a human pursuit
 Closeness of mapping for “regular” people/programmers

 Key Research: human-centered studies
4. Teacher
 Key Focus: learnability
 Avoid irrelevant struggles (e.g., syntax for beginners)
 Often significant focus on programming environment
 Rarely cares about scalability, efficiency, etc.
 If advanced class, may want commercial tools
 Key Research: pedagogy
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Roles (discussion)

• Do we need other roles to cover the perspectives / 
desires for languages?

• Are there better names?
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Methods

• Requirements and creation
– Not necessarily have a prototype yet

• Evaluation
– Have a design
– At least a prototype

• Some methods may be used for many kinds of 
information gathering

• My previous talks and papers have shown how my 
group has used many of these
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Methods
(Requirements and Creation)
1. Interviews
 Understand the experience of experts
 Identify important problems to solve & existing approaches
 Limited to small numbers
 Opinions – limited by what is salient

2. Surveys
 Good for identifying how widespread a problem is
 How important to address

 Also opinions; data can be noisy
 But not particularly useful to ask what people like best

 Limited by demographics of respondents
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Methods (Requirements and Creation)

3. Corpus Studies
 Look for patterns in existing code
 Need hypotheses about what to look for
 Need a representative corpus
 Open source may not match closed source

 (Also can be used for field studies of new designs)
4. Natural Programming
 A participatory design method
 Elicit how people express solutions without special training
 Closeness of mapping; learnability
 Limited by participant’s prior experiences
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Methods (Requirements and Creation)
5. Rapid Prototyping
 Ubiquitously used in other areas of HCI
 Low-fi (“paper”) prototypes useful to try out early ideas

 From overall concepts to low-level syntax issues
 Experimenter plays compiler

 But hard to do accurately
 Best to rely on results rather than opinions

6. PL and SE Theory
 SE theory characterizes the engineering practices that languages should support 

(e.g. separate development on different modules)
 PL theory provides general principles for language design (e.g. distinguishing 

types and values)
 PL theory provides a set of well-understood solutions to common language 

design problems (e.g. memory safety as a way of making a language more 
secure; object-oriented dispatch as a way of providing extensibility)

 (See Jonathan’s talk)
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Methods (Evaluation)

7. Qualitative user studies
 Usability analyses
 Not numerical or comparative
 Identifies obstacles and barriers

 Test feasibility, understandability, learnability
 (Can also be used on existing languages and tools as a 

formative tool – what are the problems)
 Lab study with direct observations
 Limited to small tasks, small numbers of users
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Methods (Evaluation)

8. Case studies
 Language designer writes example code
 Show expressiveness and conciseness
 Often targets what a reader might wonder if feasible
 Sometimes compared to the solution in a different language
 Limited to a few small cases
 Only shows that the designer can use it
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Methods (Evaluation)

9. Expert evaluation
 “Cognitive dimensions”, “heuristic analysis,” 

“cognitive walkthroughs”
 Good vocabulary for discussing tradeoffs
 Widely used for VPs, etc.
 But “just” the evaluator’s opinion
 Often the designer’s opinion

 Not validated that correlates with quantitative experiments
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Methods (Evaluation)

10. Performance evaluation
 Typically using speed of resulting code on benchmarks
 Sometimes standardized

 SIGPLAN’s “empirical evaluations” are just for performance 
 Benchmarks may not match real code
 Real programmers may not be able to write code that has 

optimal properties
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Methods (Evaluation)

11. User experiments
 Also called: Formal User Studies or randomized controlled trials 

(RCTs) or A/B Studies
 Are these all the same?
 What are “non-randomized, fully controlled experiments”? – Ko/Kaijanaho

 Show that A has an actual, measurable advantage over B
 “Gold standard” for academic papers
 Limited to the specific situation studied
 Not clear that results of multiple experiments can be combined
 Interaction among features, e.g., lack of consistency
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Methods (Evaluation)

12. Formalism and proof
 Show that a language has certain properties, like type 

soundness
 Used to develop and extend PL theory
 Aids the conceptual integrity of the language design 
 Proof forces designer to really think through the design

 May provide specification and safety guarantees
 Formal verification with tools like Dafny or Coq
 May be a gap between what can be specified and what 

programmers want to do
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Methods (discussion)

• What other methods should be included?
– Eye trackers? – or is that part of usability, experiments?
– Ko/Kaijanaho: “program pair analyses”?

• HCI teaches > 30 UX methods, what others have people 
used for PL design?

• What about other methods from other fields?
– What can / should we “borrow”?

• Do we need to invent new methods? For what?
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Argue for Interdisciplinary Approach
• Designers should use multiple methods from multiple fields

– Provide complementary kinds of information / evidence
• One method can address the shortcomings of another
• Through triangulation the whole can be greater than the sum of the 

individual methods
– Use methods at all phases of the process
– “Mixed methods”

• “Successful” languages meet multiple goals
• Be strategic in selecting methods

– What are the questions / claims?
• CMU’s collaboration PL/SE + HCI has worked well

– Myers, Aldrich, Shaw, Herbsleb
– ~20 PhD students
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Argue Against
• We should argue against:

× Unsubstantiated claims
× Unstated assumptions about what is “best”

• Must list project/language goals
× Use of inappropriate methods
× Performing the methods incorrectly
× Assuming only one method is valid to use

• E.g., Formal Methods or Performance or RCTs
× Just assuming the conventional wisdom

• Studies often show it doesn’t hold (see next talk!)
× Inadequate reporting of results

× Non-reproducibility of studies – insufficiently documented
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Examples

• (If time)
– We have used a variety of these methods in many projects

• (If not time), See:
– Our position paper for this meeting
– Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok 

Yoon. "Programmers Are Users Too: Human-Centered Methods for 
Improving Programming Tools," IEEE Computer, Special issue on 
UI Design, 49, issue 7, July, 2016, pp. 44-52. IEEE DL or local pdf

– My presentation at Dagstuhl 15222: Brad A. Myers, "Using the 
Natural Programming Approach Throughout the 
Lifecycle," Dagstuhl Conference on Human-Centric Development of 
Software Tools, May 25 – 28, 2015, Dagstuhl Seminar 15222, p. 
128. pdf. DOI: 10.4230/DagRep.5.5.115

31 © 2018 – Brad A. Myers

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7503516
http://www.cs.cmu.edu/%7Enatprog/papers/IEEE-Computer-07503516.pdf
http://www.dagstuhl.de/15222
http://drops.dagstuhl.de/opus/volltexte/2016/5404/pdf/dagrep_v005_i005_p115_s15222.pdf
http://dx.doi.org/10.4230/DagRep.5.5.115


Many User Centered Methods
• Contextual Inquiry
• Contextual Analysis
• Paper prototypes
• Think-aloud protocols
• Heuristic Evaluation
• Affinity diagrams
• Personas
• Wizard of Oz
• Task analysis
• A/B testing
• Cognitive Walkthrough
• Cognitive Dimensions 
• KLM and GOMS (CogTool)
• Video prototyping

• Body storming
• Expert interviews
• Questionnaires
• Surveys
• Interaction Relabeling
• Log analysis
• Storyboards
• Focus groups
• Card sorting
• Diary studies
• Improvisation
• Use cases
• Scenarios
• “Speed Dating”
• …
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Example of Interviews: Immutability

• Experts recommend making classes immutable so instances cannot 
change accidentally
– Thread safe, more secure, no unexpected state changes, etc.

• Usability studies suggest programmers prefer classes that can change
• Various relevant language features

– C++ const, Java final, Obj-C immutable collections, .NET Freezable, etc.
• Semi-structured interviews with a convenience sample of 8 software 

engineers 
– Agreed that mutability is a frequent source of bugs
– But none of these features are what is needed
– Preferred transitive, class-based immutability

• Provided this in the Glacier tool (Coblenz, et. al. ICSE’2016 and ICSE’2017)
• Great Languages Allow Class Immutability Enforced Readily
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Corpus Data Mining

• Studied 11 million Java try/catch blocks from GitHub using 
the Boa tool

• 12% of catch blocks were completely empty. 
• 25% of all exceptions caught are simply Exception
• Motivated a new tool to help programmers write better 

exception handling code

34 © 2018 – Brad A. Myers

[Kery, Le Goues, & Myers, MSR’2016]
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“Natural Programming”
• Technique developed by my group to elicit developer’s 

“natural” expressions
– Mental models of tasks, vocabulary, etc.

• Blank paper tests
• Must prompt for the tasks in a way that doesn’t bias the 

answers
• Examples:

– PacMan before and after
• Mostly rule-based (if-then)

– API designs
• Architecture, words used, which methods are on

which classes

35 © 2018 – Brad A. Myers



Early Prototyping
• Thomas LaToza designing new visualization tool to try to help 

answer Reachability Questions
• Prototypes created with Omnigraffle and printed
• Revealed significant usability

problems that were fixed
before implementation
– Graphical presentation
– Controls
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Another Example: Variolite

• How to support data scientists with exploratory programming?
• What kind of version control support would be useful?

– Interviews and CIs showed that conventional approaches like Git are 
too heavy-weight

• Showed dozens of sketches to
target users to get feedback on
which seemed usable and useful

• Resulting design presented at CHI’2017
• Variations Augment Real Iterative Outcomes

Letting Information Transcend Exploration
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Expert Analyses
• Collaborating with SAP on their APIs and tools
• We studied SAP’s Enterprise Service-Oriented Architecture (eSOA) 

APIs & Documentation
– Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, Brad A. Myers. "Usability Challenges for Enterprise Service-Oriented 

Architecture APIs," 2008 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC'08. Sept 15-18, 2008, 
Herrsching am Ammersee, Germany. pp. 193-196.

• Naming problems:
– Too long
– Not understandable
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Usability Analysis
• Thomas LaToza’s REACHER tool for Reachability Questions went 

through multiple iterations
– Revised based on paper prototype (discussed already)
– Revised based on 1st evaluation of full system

• E.g., replaced duplicates of calls to methods with pointers
• Changed to preserve order of outgoing edges
• Redesign of icons, interactions


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Another Example of Usability Analysis
• Sugilite: Smartphone Users

Generating Intelligent Likeable
Interfaces Through Examples

• Allow end-users to create
automations on Smartphones

• Initiate with speech commands
• Record scripts by example
• Generalizes from one or more examples
• 19 participants attempted 5 tasks

– All completed at least 2 tasks successfully
– 8 (42.1%) succeed in all 4 tasks
– Overall, 65 out of 76 (85.5%) scripts worked
– Feedback on what we need to improve
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A/B Testing of Programming Language Feature

• Glacier immutability extension to Java
• 20 experienced Java programmers
• Compared to using Java final as instructed by Josh Bloch
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final Glacier
Users who made errors enforcing immutability
(after all tasks)

10/10 0/10

Completed FileRequest.execute() tasks with
security vulnerabilities

4/8 0/8

Completed HashBucket.put() tasks with bugs 7/10 0/7



Another Example of A/B testing

• User testing of InterState
compared to JavaScript
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p < .01**
p < .05  *

smaller is better



Another Example of A/B testing
• Gneiss: Gathering Novel End-user Internet Services using 

Spreadsheets
– Kerry Chang and Brad A. Myers, "Using and Exploring Hierarchical Data in 

Spreadsheets." CHI'2016, pp. 2497-2507.
• Novel spreadsheet interface for investigating hierarchical 

(e.g., JSON) data
– Investigate using conventional spreadsheet formulas and drag-and-

drop of columns
• Gneiss users significantly outperformed Excel users and 

programmers (p<.001)
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